GCE AS/A level
0982/01
MATHEMATICS - M3
Mechanics
A.M. MONDAY, 27 June 2016

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. A particle of mass 60 kg moves along the horizontal x-axis under the action of a horizontal constant force of 1800 N . The magnitude of the resistance to motion of the particle is 120 vN , where $v \mathrm{~ms}^{-1}$ is the velocity of the particle. At time $t=0$ seconds, the particle is moving with velocity $8 \mathrm{~ms}^{-1}$.
(a) Show that v satisfies the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=30-2 v \tag{2}
\end{equation*}
$$

(b) Find an expression for v at time t. Determine the limiting value of v.
2. (a) A particle moves along the x-axis such that its position x m after time t seconds is given by

$$
x=A \sin \omega t+B \cos \omega t
$$

Show that the motion of the particle is Simple Harmonic. State the value of x at the centre of motion and find the amplitude of the motion.
(b) Another particle moves with Simple Harmonic Motion with centre 0 . The particle has velocity $13 \mathrm{~ms}^{-1}$ when it is 3 m from O and $5 \mathrm{~ms}^{-1}$ when it is 5 m from 0 .
(i) Find the period and amplitude of the motion.
(ii) Given that the particle is at O at time $t=0$, find the distance of the particle from O when $t=0 \cdot 3$.
3. Solve the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+9 x=27 t
$$

where $x=\frac{\mathrm{d} x}{\mathrm{~d} t}=0$ when $t=0$. Hence find the value of x when $t=2$.
4. A body of mass 8 kg starts from rest and falls vertically under gravity. At time t seconds, the body has fallen through a distance x metres, and its velocity is $v \mathrm{~ms}^{-1}$. During the downward motion, it experiences a resisting force of $0 \cdot 4 v^{2} \mathrm{~N}$.
(a) Show that v satisfies the differential equation

$$
\begin{equation*}
196-v^{2}=20 v \frac{\mathrm{~d} v}{\mathrm{~d} x} \tag{2}
\end{equation*}
$$

(b) Find an expression for x in terms of v and hence calculate the value of x when the speed of the body is $10 \mathrm{~ms}^{-1}$.
(c) Find an expression for v at time t and hence find the value of v when $t=2$.
5. A particle A, of mass 2 kg , lies on the edge of a horizontal surface. It is connected by means of a light inextensible string of length 1.8 m to another particle B, of mass 5 kg , which is lying on the surface 0.2 m from the edge such that $A B$ is perpendicular to the edge. The surface is at a height of 2 m above the ground. Particle A is then pushed gently over the edge. Find the magnitude of the velocity with which B begins to move and the impulsive tension in the string.
6. The diagram shows a uniform rod $A B$, of length 10 m and mass 25 kg , in limiting equilibrium with its end A on rough horizontal ground and point C resting against a smooth fixed peg. The rod is inclined at an angle of 60° to the ground.

The distance $A C$ is $x \mathrm{~m}$ and the coefficient of friction between the rod and the ground is 0.3 .
(a) Draw a diagram showing all the forces acting on the rod. Label all points and forces clearly.
(b) Determine the magnitude of the reaction at C and the magnitude of the normal reaction at A.
(c) Find the value of x.

END OF PAPER

